SHIMURA VARIETIES WITH Γ1(p)-LEVEL VIA HECKE ALGEBRA ISOMORPHISMS: THE DRINFELD CASE

نویسندگان

  • THOMAS J. HAINES
  • MICHAEL RAPOPORT
چکیده

We study the local factor at p of the semi-simple zeta function of a Shimura variety of Drinfeld type for a level structure given at p by the pro-unipotent radical of an Iwahori subgroup. Our method is an adaptation to this case of the Langlands-Kottwitz counting method. We explicitly determine the corresponding test functions in suitable Hecke algebras, and show their centrality by determining their images under the Hecke algebra isomorphisms of Goldstein, Morris, and Roche.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Models of Shimura Varieties and a Conjecture of Kottwitz

We give a group theoretic definition of “local models” as sought after in the theory of Shimura varieties. These are projective schemes over the integers of a p-adic local field that are expected to model the singularities of integral models of Shimura varieties with parahoric level structure. Our local models are certain mixed characteristic degenerations of Grassmannian varieties; they are ob...

متن کامل

1 Verification of the GGS conjecture for sl(n), n ≤ 10.

In the 1980’s, Belavin and Drinfeld classified non-unitary solutions of the classical Yang-Baxter equation (CYBE) for simple Lie algebras [1]. They proved that all such solutions fall into finitely many continuous families and introduced combinatorial objects to label these families, Belavin-Drinfeld triples. In 1993, Gerstenhaber, Giaquinto, and Schack attempted to quantize such solutions for ...

متن کامل

A ug 1 99 9 Verification of the GGS conjecture for sl ( n ) , n ≤ 12 .

In the 1980’s, Belavin and Drinfeld classified non-unitary solutions of the classical Yang-Baxter equation (CYBE) for simple Lie algebras [1]. They proved that all such solutions fall into finitely many continuous families and introduced combinatorial objects to label these families, Belavin-Drinfeld triples. In 1993, Gerstenhaber, Giaquinto, and Schack attempted to quantize such solutions for ...

متن کامل

1 9 Ja n 19 99 Verification of the GGS conjecture for sl ( n ) , n ≤ 10 . Travis

In the 1980’s, Belavin and Drinfeld classified non-unitary solutions of the classical Yang-Baxter equation (CYBE) for simple Lie algebras [1]. They proved that all such solutions fall into finitely many continuous families and introduced combinatorial objects to label these families, Belavin-Drinfeld triples. In 1993, Gerstenhaber, Giaquinto, and Schack attempted to quantize such solutions for ...

متن کامل

The Combinatorics of Bernstein Functions

A construction of Bernstein associates to each cocharacter of a split p-adic group an element in the center of the Iwahori-Hecke algebra, which we refer to as a Bernstein function. A recent conjecture of Kottwitz predicts that Bernstein functions play an important role in the theory of bad reduction of a certain class of Shimura varieties (parahoric type). It is therefore of interest to calcula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010